Sensitive Attributes based Privacy Preserving in Data Mining using k-anonymity
نویسندگان
چکیده
منابع مشابه
Sensitive Attributes based Privacy Preserving in Data Mining using k-anonymity
Data mining is the process of extracting interesting patterns or knowledge from huge amount of data. In recent years, there has been a tremendous growth in the amount of personal data that can be collected and analyzed by the organizations. Organizations such as credit card companies, real estate companies and hospitals collect and hold large volumes of data for their research purposes. E. g. N...
متن کاملMultiple Sensitive Attributes based Privacy Preserving Data Mining using k-Anonymity
Data mining is the process of extracting interesting patterns or knowledge from large amount of data. With the development of Data mining technology, an increasing number of data can be mined out to reveal some potential information about the user, because of which privacy of the user may be violated easily. Privacy Preserving Data Mining is used to mine the potential valuable knowledge without...
متن کاملPrivacy Preserving Data Mining in Electronic Health Record using K- anonymity and Decision Tree
In this paper, we present an accurate and efficient privacy preserving data mining technique in Electronic Health Record (EHR) by using k –anonymity and decision tree C4.5 that is useful to generate pattern for medical research or any clinical trials. It is analyzed that anonymization offers better privacy rather than other privacy preserving method like that randomization, cryptography, pertur...
متن کاملPrivacy-Preserving Distributed k-Anonymity
k-anonymity provides a measure of privacy protection by preventing re-identification of data to fewer than a group of k data items. While algorithms exist for producing k-anonymous data, the model has been that of a single source wanting to publish data. This paper presents a k-anonymity protocol when the data is vertically partitioned between sites. A key contribution is a proof that the proto...
متن کاملPrivacy Preserving Data Publishing Based on k-Anonymity by Categorization of Sensitive Values
In many organizations large amount of personal data are collected and analyzed by the data miner for the research purpose. However, the data collected may contain sensitive information which should be kept confidential. The study of Privacypreserving data publishing (PPDP) is focus on removing privacy threats while, at the same time, preserving useful information in the released data for data m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2013
ISSN: 0975-8887
DOI: 10.5120/14633-8003